DATA ARCHITECTURE OPTIMIZATION
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Architectures Will Evolve To Make Possible New Business Outcomes</td>
<td>3</td>
</tr>
<tr>
<td>Optimize Your Data Architecture With Hortonworks Data Platform (HDP™)</td>
<td>4</td>
</tr>
<tr>
<td>And Apache Hadoop®</td>
<td></td>
</tr>
<tr>
<td>A Strained Data Architecture</td>
<td>5</td>
</tr>
<tr>
<td>Archive, Onboard, And Enrich</td>
<td>6</td>
</tr>
<tr>
<td>A Data Architecture Optimized With Apache Hadoop</td>
<td>7</td>
</tr>
<tr>
<td>Hortonworks Data Platform And Apache Hadoop</td>
<td>8</td>
</tr>
<tr>
<td>Data Architecture Optimization Customer Use Cases</td>
<td>9</td>
</tr>
<tr>
<td>About Hortonworks</td>
<td>9</td>
</tr>
</tbody>
</table>
The storylines are well-worn: data as an underutilized renewable resource; data transforming industries; every business is a data business. But organizations must deal with the realities of existing data architectures and budget constraints. Are there practical steps to take in order to turn these data storylines into real business outcomes?

Data Architecture Optimization describes an approach to apply Apache Hadoop® and related community-driven open source technologies to make data architectures capable of realizing new and improved business outcomes while driving significant cost out of the IT budget.

The rapid growth in data volumes from a wide range of new sources indeed offers disruptive opportunity to those who can put it to use. There is a change in mindset among IT organizations and data architects, who now look to capture all data, keep it longer, and prepare to use the data in new ways as business conditions evolve. These changes create dramatic pressure on traditional data architectures, which were built to support structured data with modest growth.

Hortonworks Data Platform (HDP®), built on Hadoop, offers the ability to capture all structured and emerging types of data, keep it longer, and apply traditional and new analytic engines to drive business value, all in an economically feasible fashion. In particular, organizations are breathing new life into Enterprise Data Warehouse (EDW)-centric data architectures by integrating HDP to take advantage of its capabilities and economics.
Optimize Your Data Architecture With Hortonworks Data Platform (HDP®) And Apache Hadoop®

The Enterprise Data Warehouse became a standard component in corporate data architectures because it provides valuable business insights and powerful decision analytics for front-line workers, executives, business analysts, data scientists, and software developers. For years, the EDW has been the core foundation on which analytics are built within the enterprise. EDW solutions are mature and extremely effective for reporting and data analytics—especially for known transactional data. As new data types and new analytic tools have emerged, however, a new approach for a broader data and analytics architecture in the enterprise has become necessary. With the burgeoning volume and variety of these new data sources and types, the center of gravity for Modern Data Architectures is shifting. This is causing the need not only for new agile tools, but also for an integrated ecosystem solution.

The need for a new approach is evident in the challenges IT executives and business executives face:

- **Cost:** As data volumes and varieties grow, so do the costs. Often organizations struggle to validate the cost of storing data against the value provided. As the scale of data to be managed outpaces Moore's Law, new architectural approaches are required to keep costs contained.

- **Complexity:** Data architectures have an expanded role and footprint, integrating many data sources to drive analytics engines. Data movement and transformation steps have multiplied as a result. The world has moved from traditional 'schema on write' for known and fixed data structures to 'schema on demand' for known as well as unknown structures.

- **Expansion:** New (and often big) data sources have emerged, presenting both structural and scale challenges to the EDW-centric architecture. It can be very difficult to apply existing tools in the new domain, and even more risky to enable agile functionality inside of traditional business-critical systems.

Within any data architecture, the value of the EDW is clear. Businesses require analytics-driven insights and real-time dashboards to run efficiently. Predictive analytics enable successful companies to compete and win. All the while, driven by new competitive pressures, new data sources, and budget constraints, leading organizations are augmenting traditional data architectures with Hadoop as a way to extend capabilities with new sets of data and analytic applications while containing or reducing costs. As an answer to the challenges of cost, complexity, and expansion, organizations are turning to Hadoop to modernize their data architectures and at the same time enhance the value of their existing EDW implementations.
A Strained Data Architecture

In traditional data center architectures, the EDW is a key component in the analytics chain, ingesting data from systems of record, processing it and then feeding key analytic capabilities across data marts, apps and dashboards. This generally accepted approach has served the enterprise well for years. As the landscape of data sources and systems has grown, however, several limitations in this approach have become apparent:

• Cold or rarely used data is stored in expensive, high performance data systems across the architecture. A typical EDW, for instance, dedicates a majority of its storage capacity to cold data. Many organizations face difficult decisions over which data to store and how long to keep data in order to manage costs, while sacrificing the value of deeper analytics enabled by the additional data.

• Relatively low-value Extract-Transform-Load (ETL) workloads are performed on rarely used data and consume significant processing cycles in high performance systems. In a typical EDW, ETL processing can account for over half of processing capacity.

• New types of data, such as clickstream, sensor, and server log data, that do not fit predefined schema in the data architecture and EDW are poorly managed. Only a subset or aggregate of the data is maintained, meaning valuable insights are discarded.

Figure 1: A traditional data architecture
Leveraging Hadoop to build a Modern Data Architecture allows organizations to take practical steps to support the new demands of rapidly growing volumes and varieties of data. These steps include creating an active archive, onboarding ETL processing, and enriching the data architecture with new data sources.

Creating an active archive in Hadoop accomplishes several goals. First, it provides economical storage for cold and rarely used data across the data architecture, freeing up capacity in expensive systems. Second, it allows an organization to capture any type of data and keep it much longer, taking advantage of Hadoop’s flexible design allowing storage capacity to be added incrementally as needed. And third, it brings archived data back to life, making it easily accessible.

Onboarding ETL processing to Hadoop offers a similar range of benefits. As with moving data, moving processing from expensive systems frees up capacity in those systems for other tasks, such as high value analytical workloads. Additionally, because Hadoop is a schema-on-demand system, organizations can gain efficiencies by implementing ELT processes, landing all data in Hadoop and deferring much of the transformation burden until the data is required for analysis.

Finally, Hadoop allows organizations to enrich the broader data architecture by ingesting new types of data and refining that data to be analyzed in Hadoop, in the EDW, or in any analytical system that can add value to the business. The ability for Hadoop to ingest, store, and process any type of data makes possible the variety of use cases that cause people to declare data is transforming business. And because all of the data and analytical insights are retained, businesses can build on them to drive better outcomes in the long term.

Figure 2: ETL processing before and after Apache Hadoop

Archive Data in Hadoop

Move cold or rarely used data to Hadoop as an active archive to reduce costs while expanding the amount of history that can be maintained.

Onboard ETL Processes To Hadoop

Implement ETL processes in Hadoop, perform more efficient ELT, and reduce costly data movement.

Enrich the Value of Your EDW

Use Hadoop to refine new data sources, such as web and machine data, so they can be used to fuel your business and expand opportunity.
A Data Architecture Optimized With Apache Hadoop

With Hadoop, the data architect can cut costs associated with the data architecture while extending new analytic value to the enterprise. Hadoop provides linear scale storage and compute so that it can scale to meet the needs of not just new data sources but more advanced workloads and data science methods that have emerged. The benefits of this new architecture include:

1. Move rarely used data to Hadoop and access it on demand, saving on overall storage costs
2. Store more data longer to enhance analytics with deeper information providing better results
3. Store and process new data sources and feed transformed data into your EDW to augment or create wholly new analytic value
4. Onboard ETL processes in Hadoop in order to take advantage of compute and operational efficiencies

Figure 3: A Modern Data Architecture with HDP
Hortonworks Data Platform (HDP®)
And Apache Hadoop

Evolving the data architecture with Hortonworks Data Platform and Hadoop enables your organization to store and analyze data at massive scale, extract critical business insights from all types of data from any source, improve your competitive position in the market, and maximize customer loyalty and revenues.

HDP provides the full suite of essential Hadoop capabilities that are required by the enterprise and that serve as the functional definition of any data platform technology. HDP is architected to integrate deeply with existing data center technology, and includes a comprehensive set of capabilities including Data Management, Data Access, Data Governance and Integration, Security, and Operations. And HDP is developed entirely in the open community, allowing you to take advantage of rapid community innovation and deep integration across the ecosystem, while avoiding proprietary lock-in.

Figure 4: Hortonworks Data Platform capabilities—data governance and integration, data management, data access, security, and operations
Data Architecture Optimization Customer Use Cases

A number of data-driven organizations have captured new business insights, while lowering the cost of their IT infrastructure by leveraging Hadoop and HDP. A sample of customer use cases and the results they have achieved are presented below:

- **Symantec** helps consumers and organizations secure and manage their information-driven world. The Symantec Cloud Platform team turned to Hortonworks and HDP to help speed the rate with which it could ingest and process 500,000 security log messages per second (40 billion messages per day). Using HDP in the cloud, the team reduced its average time to analysis from four hours to two seconds.

- **Fuse by Cardinal Health** is an innovation lab focused on improving the future of health and wellness by making healthcare safer and more cost effective. The Fuse team focuses on connected care, building a smarter supply chain, and discovering new insights through analytics. Fuse chose Hortonworks Data Platform to optimize its data architecture and enrich its existing data with freely available public datasets.

- **Neustar**, a telecommunications information and analytics provider used to capture less than 10% of its network data and retain it for 60 days. With Hortonworks Data Platform, Neustar now captures 100% of the network data and retains it for two years. That means 150 times more storage while saving millions.

- **TRUECar’s** mission is to make the car buying process simple, fair and fun. The company looked to Hadoop and HDP to build a Modern Data Architecture that could scale economically and capture more data. TRUECar data in Hadoop makes the market work more efficiently, and all the parties like car buyers, dealers and manufacturers share in the benefits of the efficiency.

About Hortonworks

Hortonworks is a leading innovator at creating, distributing and supporting enterprise-ready open data platforms. Our mission is to manage the world’s data. We have a single-minded focus on driving innovation in open source communities such as Apache Hadoop, NiFi, and Spark. Our open Connected Data Platforms power Modern Data Applications that deliver actionable intelligence from all data: data-in-motion and data-at-rest. Along with our 1600+ partners, we provide the expertise, training and services that allows our customers to unlock the transformational value of data across any line of business. We are Powering the Future of Data™.

Contact
For further information visit http://hortonworks.com/hadoop/
+1 408 675-0983
+1 855 8-HORTON
INTL: +44 (0) 20 3826 1405